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Abstract
The thermostatistic problems of a q-deformed ideal Fermi gas in any
dimensional space and with a general energy spectrum are studied, based
on the q-deformed Fermi–Dirac distribution. The effects of the deformation
parameter q on the properties of the system are revealed. It is shown that
q-deformation results in some novel characteristics different from those of an
ordinary system. Besides, it is found that the effects of the q-deformation on
the properties of the Fermi systems are very different for different dimensional
spaces and different energy spectrums.

PACS numbers: 05.30.−d, 03.75.Ss, 05.70.−a

1. Introduction

It is commonly believed that ubiquitous systems can be naturally described within Boltzmann–
Gibbs (BG) statistical mechanics. However, it is found that there is a class of physical systems
so that the BG scenario may not be appropriate any longer [1–4] and an extension of the
statistical mechanics is required.

There are two principal methods in the literature of introducing the intermediate statistical
behavior: the nonextensive statistics introduced by Tsallis [5] and the q-deformed theory
related to the quantum groups originally introduced by Biedenharn and Macfarlane [6, 7].
Some possible connections between the nonextensive statistics and quantum groups have been
investigated by several researchers [8–13]. For example, the Tsallis entropy can be defined
within the q-calculus framework [9–11] and the nonextensivity of classical set theory has been
proved to relate to the q-oscillator [13].

The theory of the q-deformed statistics has become a topic of great interest in the last
few years because of its possible applications in a wide range of areas, such as anyon physics
[14, 15], vertex models [16], quantum mechanics in discontinuous spacetime [17], vibration
of polyatomic molecules [18–20], vortices in superfluid films [21] and phonon spectrum in
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4He [22], etc. In recent years, many researches are devoted to the investigation of q-deformed
physical systems [23–35]. For example, in [26], the thermodynamic properties of the q-
deformed bosons and fermions are explored and both low- and high-temperature behaviors for
the systems confined in a three-dimensional space and with nonrelativistic energy dispersion
are discussed.

In this paper, we continue the work of [26] and study the thermostatistic properties of an
ideal q-deformed Fermi gas in any dimensional space and with a general energy spectrum.
The paper is organized as follows. In section 2, we give a brief review of the previous literature
concerning the q-deformed algebra of fermions and the q-deformed Fermi–Dirac distribution.
In section 3, we derive the analytical expressions of some important thermodynamic quantities
based on the q-deformed Fermi–Dirac distribution. In section 4, the approximations for the
thermodynamic quantities are given at the low- and high-temperature limits. The effects of
the q-deformation on the properties of a q-deformed Fermi gas are discussed in section 5 and
some novel characteristics are revealed. Some important conclusions are given in section 6.

2. Q-deformed fermion algebra and the distribution of the q-deformed fermions

The symmetric q-deformed fermion algebra is defined in terms of the creation operators â+

and annihilation operators â which satisfy [6, 7, 36]

[N̂, â+] = â+, [N̂, â] = −â, (1)

and

â+â = [N̂ ], ââ+ = [1 − N̂ ], (2)

where N̂ is the number operator, the q-basic number [x] is defined as

[x] ≡ qx − q−x

q − q−1
, (3)

and q ∈ R+ is the deformation parameter. For the q-deformed fermions, the Hilbert space
with basis |n〉 is constructed such that [37]

N̂ |n〉 = n|n〉, â|0〉 = 0,

â+|n〉 = [1 − n]1/2|n + 1〉,
â|n〉 = [n]1/2|n − 1〉.

(4)

It should be pointed out that the Pauli principle is also applicable for the q-deformed fermions,
i.e., the eigenvalues of the number operator N̂ can only be taken the values of n = 0 and 1.

To derive the mean occupation numbers of each energy level, we choose the Hamiltonian
[29]

Ĥ =
∑

k

(εk − µ)N̂k, (5)

where k is a state label, N̂k and εk are, respectively, the number operator and energy associated
with state k, µ is the chemical potential of the system. The mean value of the q-deformed
occupation number fk,q is defined by [29]

[fk,q] = 1

�
tr{exp(−βĤ )[N̂k]}, (6)

where β = 1/(kBT ), kB is the Boltzmann constant, T is the temperature and � =
tr[exp(−βĤ )] is the partition function. With the help of the cyclic property of the trace
[37, 38], we can get

[fk,q]

[1 − fk,q]
= exp[−β(εk − µ)] (7)
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from equations (2) and (4)–(6). Using equations (3) and (7), one can derive the statistical
distribution of the q-deformed fermions as [26]

fk,q = 1

2 ln q
ln

[
z−1 exp(βεk) + q

z−1 exp(βεk) + q−1

]
, (8)

where z = exp(βµ) is the fugacity of the system.
It is easily proved that when q = 1, equation (8) is simplified as

fk,1 = 1

z−1 exp(βεk) + 1
, (9)

which is just the standard Fermi–Dirac distribution. This means that the q-deformed fermions
will be the same as the ordinary fermions when q → 1.

Another important property concerned the distribution is that fk,q satisfies the symmetry
property, i.e., fk,q = fk,1/q . This implies that the q-deformed fermions with the deformation
parameter q may possess the same properties as those with the deformation parameter 1/q, so
that we can restrict our discussion to q � 1 in the following discussion.

3. Thermostatistic properties of q-fermions

We consider an ideal gas of q-fermions confined in a D-dimensional box and with the general
energy spectrum

ε = aps, (10)

where p is the momentum of a particle, and a and s are the positive constants.
According to equation (8), the total number of particles and the total energy of the system

can be, respectively, expressed as

N =
∑

k

1

2 ln q
ln

[
z−1 exp(βεk) + q

z−1 exp(βεk) + q−1

]
(11)

and

U =
∑

k

εk

2 ln q
ln

[
z−1 exp(βεk) + q

z−1 exp(βεk) + q−1

]
. (12)

When the number of particles in the system is large enough, the sum over state k may be
replaced by the integral over the phase space, i.e.,

N = g

hD

∫ D∏
i=1

dpi dxi

1

2 ln q
ln

[
z−1 exp(βaps) + q

z−1 exp(βaps) + q−1

]
= gVD

λD
hη(z, q) (13)

and

U = g

hD

∫ D∏
i=1

dpi dxi

aps

2 ln q
ln

[
z−1 exp(βaps) + q

z−1 exp(βaps) + q−1

]
= ηkBT

gVD

λD
hη+1(z, q), (14)

where xi and pi are, respectively, the ith component of coordinate and momentum of a particle,
g is the degree of the spin degeneracy, h is the Planck constant, VD is the D-dimensional
volume of the system, η = D/s,

λ = ha1/s

π1/2(kBT )1/s

[
�(D/2 + 1)

�(D/s + 1)

]1/D

(15)



11248 S Cai et al

is the generalized thermal wavelength [39],

hn(z, q) = 1

�(n)

∫ ∞

0
dx xn−1 1

2 ln q
ln

[
z−1 exp(x) + q

z−1 exp(x) + q−1

]
(16)

may be referred to as the generalized Fermi integral of q-fermions and �(x) =∫ ∞
0 exp(−t)tx−1 dt is the Gamma function. It can be seen from equation (16) that when

q = 1,

hn(z, 1) = 1

�(n)

∫ ∞

0
dx

xn−1

z−1 exp(x) + 1
(17)

is just the standard Fermi integral.
According to equations (13) and (14), we can derive the specific heat at constant volume

as

CV =
(

∂U

∂T

)
VD

=
(

∂U

∂T

)
VD,z

+

(
∂U

∂z

)
VD,T

(
∂z

∂T

)
VD

= NkB

[
η(η + 1)

hη+1(z, q)

hη(z, q)
− η2 hη(z, q)

hη−1(z, q)

]
. (18)

Because of the general form of the energy spectrum adopted here, the expressions derived
above are valid for a variety of q-deformed fermion and ordinary fermion systems. For
example, if D = 3, s = 2 and a = 1/(2m), equations (13), (14) and (18) may be, respectively,
simplified as

N = gVD

λ3
h3/2(z, q), (19)

U = 3

2
kBT

gVD

λ3
h5/2(z, q), (20)

and

CV = NkB

[
15

4

h5/2(z, q)

h3/2(z, q)
− 9

4

h3/2(z, q)

h1/2(z, q)

]
, (21)

where λ =
√

h2/2πmkBT and m is the mass of a particle. Equations (19)–(21) give the
properties of a nonrelativistic q-deformed Fermi gas in a three-dimensional space. If D = 3,
s = 1 and a = c, equations (13), (14) and (18) become

N = gVD

λ3
h3(z, q), (22)

U = 3kBT
gVD

λ3
h4(z, q), (23)

and

CV = NkB

[
12h4(z, q)

h3(z, q)
− 9h3(z, q)

h2(z, q)

]
, (24)

where λ = hc/(2π1/3kBT ) and c is the light speed. Equations (22)–(24) present the properties
of an ultrarelativistic q-deformed Fermi gas in a three-dimensional space. If q → 1 is
set, equations (19)–(21) and (22)–(24) can be further simplified and used to describe the
properties of ordinary nonrelativistic and ultrarelativistic Fermi gases in the three-dimensional
space, respectively. On the other hand, if D is chosen to be equal to 1 or 2, equations (13),
(14) and (18) can be used to describe the characteristics of q-deformed Fermi systems in a
low-dimensional space.
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4. Low- and high-temperature behaviors of q-fermions

At very low temperatures, the generalized Fermi integral hn(z, q) can be written as a quickly
convergent series:

hn(z, q) = (ln z)n

�(n + 1)

[
1 + n(n − 1)

π2

6
γ1(q)

1

(ln z)2

+ n(n − 1)(n − 2)(n − 3)
7π4

360
γ3(q)

1

(ln z)4
+ · · ·

]
, (25)

where

γn(q) =
∫ ∞

0
dx

xn

2 ln q
ln

[
exp(x) + q

exp(x) + q−1

]/∫ ∞

0
dx

xn

exp(x) + 1
(26)

is a factor related to the deformation parameter q. It can be proved that γn(q) > 1 for q �= 1
and γn(q) = 1 when q = 1.

Substituting equation (25) into equations (13), (14) and (18) and keeping terms up to the
second power of kBT /εF only, one can obtain the expressions of µ, U and CV as the explicit
functions of temperature. The results are, respectively, given by

µ = εF

[
1 − π2

6
(η − 1)γ1(q)

(
kBT

εF

)2
]

, (27)

U = η

η + 1
NεF

[
1 +

π2

6
(η + 1)γ1(q)

(
kBT

εF

)2
]

, (28)

and

CV = NkBη
π2

3
γ1(q)

kBT

εF

, (29)

where

εF = a

[
hD�(D/2 + 1)

gπD/2

N

VD

]1/η

(30)

is the Fermi energy of undeformed Fermi system [40]. It is seen from equations (28) and
(29) that the q-deformation increases the total energy and heat capacity at low temperatures,
since the factor γn(q) > 1 for q �= 1. The result can be explained by comparing the statistical
distribution of the q-deformed fermions with that of the ordinary fermions. According to
equation (8), one can find that fk,q > fk,1 for εk > µ and fk,q < fk,1 for εk < µ when
q �= 1. This indicates that the q-deformation increases (decreases) the occupation of fermions
in the high (low) level at non-zero temperature and hence increases the total energy and heat
capacity.

Setting T = 0 K in equations (27) and (28), one can obtain the Fermi energy and ground-
state energy of the q-deformed Fermi system, which are, respectively, given by equation (30)
and

U0 = η

η + 1
NεF . (31)

It is clearly seen from equations (30) and (31) that both the Fermi energy and ground-state
energy are independent of q and the same as those of an original Fermi gas. In fact, it can be
further proved that all the properties of the q-deformed fermions are the same as those of the
original fermions at T = 0 K.
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On the other hand, at high temperatures, kBT � εF and hence z is very small, so that
hn(z, q) may be expressed as a series, i.e.,

hn(z, q) =
∞∑
i=1

(−1)i
q−i − qi

2 ln q

zi

in+1
. (32)

Substituting equation (32) into equations (13), (14) and (18) and keeping only the lowest-order
correction due to the finite temperature, one can express µ, U and CV as

µ = ηkBT

(
ln

εF

kBT

) [
1 + ln

(
1

�(η + 1)

2 ln q

q − q−1

)/(
η ln

εF

kBT

)]
, (33)

U = ηNkBT

[
1 +

1

2η+1�(η + 1)

q + q−1

q − q−1
ln q

(
εF

kBT

)η
]
, (34)

and

CV = ηNkB

[
1 +

1 − η

2η+1�(η + 1)

q + q−1

q − q−1
ln q

(
εF

kBT

)η
]
. (35)

At high temperatures, the second term in the square bracket in equations (33)–(35) can be
neglected, so that the expressions for µ, U and CV are reduced to those of ordinary Boltzmann
gases and independent of q.

5. Effects of the q-deformation on the properties of q-fermions

In order to understand more clearly the effects of the q-deformation on the properties of q-
deformed Fermi gases, we can use equations (13) and (18) to plot the characteristic curves of
the chemical potential and heat capacity varying with the temperature for different η = D/s,
as shown in figures 1 and 2, respectively.

From the curves in figure 1, one can obtain some important results, which are listed as
follows:

(i) When η = 0.5, which may correspond to the system of nonrelativistic ideal fermions
in a one-dimensional space, the chemical potential µ is not a monotonic function of
temperature and there exists a maximum µmax at a certain temperature Tm for any values
of q, as shown in figure 1(a). It is also observed from figure 1(a) that there exists a
cross point between the curves with q > 1 and with q = 1 at a certain temperature Tc,
so that µq>1 > µq=1 when T < Tc and µq>1 < µq=1 when T > Tc. Figure 3 further
shows the curves of µmax/εF , kBTm/εF and kBTc/εF varying with the parameter q. It is
seen that µmax/εF increases monotonically with q, while kBTm/εF and kBTc/εF decrease
monotonically with q.

(ii) When η = 1.0, which may correspond to the system of nonrelativistic ideal fermions
in a two-dimensional space or the system of ultrarelativistic ideal fermions in a one-
dimensional space, the chemical potential µ is a monotonically decreasing function of
temperature for any values of q, as shown in figure 1(b). At very low temperatures,
µ remains nearly equal to the Fermi energy εF , which is independent of q. The result
coincides with equation (27), since the coefficient of (kBT /εF )2 in equation (27) becomes
zero when η = 1. This indicates that at low-temperature region, the difference of the
chemical potentials between the q-deformed and ordinary Fermi systems disappears in
the case of η = 1.0. At other temperature regions, µq>1 is always smaller than µq=1.
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Figure 1. The curves of the scaled chemical potential µ/εF varying with the dimensionless
temperature kBT /εF for the q-deformed fermions with different parameter q in the cases of
(a) η = 0.5, (b) η = 1.0 and (c) η = 1.5, respectively.

(iii) When η = 1.5, which may correspond to the system of nonrelativistic ideal fermions in a
three-dimensional space, the curves of the chemical potential varying with the temperature
share similar characteristics with the case of η = 1.0.

From the curves in figure 2, one can find some important characteristics of the heat
capacity varying with the temperature for different values of η and q, which are listed as
follows:

(i) When η = 0.5, there exists a maximum of the heat capacity at a certain temperature for
any parameter q and the heat capacity at high temperatures approaches CV,B = 0.5NkB ,
the value predicted by the Boltzmann distribution, from above, as shown in figure 2(a).
It is also observed that the q-deformation increases the heat capacity at any temperatures
in the case of η = 0.5.

(ii) When η = 1.0, the curves of CV /NkB ∼ kBT /εF display different characteristics for
different values of q, as shown in figure 2(b). When q is smaller than a certain value q0,
CV is a monotonically increasing function of temperature and limT →∞ CV = NkB − 0.
When q > q0, there is a maximum of CV and limT →∞ CV = NkB + 0. In order to
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Figure 2. The curves of the scaled heat capacity CV /NkB varying with the dimensionless
temperature kBT /εF for the q-deformed fermions with different parameter q in the cases of
(a) η = 0.5, (b) η = 1.0 and (c) η = 1.5, respectively. The CV /NkB -axis in the inset is partly
stretched in order to show the characteristics of the curves more clearly.

determine q0, we calculate the heat capacity at high temperatures to the second order in
εF /kBT from equations (13), (18) and (32). The result is given by

CV,high = NkB

[
1 +

5q2 + 5q−2 − 22

(q − q−1)2

(ln q)2

108

(
εF

kBT

)2
]

. (36)

It is seen from equation (36) that if 5q2 + 5q−2 − 22 < 0, limT →∞ CV, high = NkB − 0,
and if 5q2 + 5q−2 − 22 > 0, limT →∞ CV, high = NkB + 0. It can be determined from the

above analysis that q0 =
√

(11 + 4
√

6)/5 ≈ 2.0. Similar to the case of η = 0.5, the heat
capacity always increases with the increase of q at any temperature in the case of η = 1.0.
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Figure 3. The curves of the maximal scaled chemical potential µmax/εF and the corresponding
dimensionless temperature kBTm/εF along with the dimensionless temperature kBTc/εF varying
with the deformation parameter in the case of η = 0.5.

(iii) When η = 1.5, the curves of CV /NkB ∼ kBT /εF become more complicated, as shown
in figure 2(c). There exists a cross point between the curves of q > 1 and q = 1, so
that CV, q>1 > CV, q=1 when T < Td and CV, q>1 < CV, q=1 when T > Td , where Td is
the temperature at the cross point. The influence of the parameter q on the heat capacity
is more obvious in the region of T < Td than in the region of T > Td . For the small
parameters q, such as q = 1.0 and 2.0, the heat capacity increases monotonously with
the temperature. For the large parameters q, such as q = 15.0 and 40.0, however, CV

first increases with the temperature and reaches a maximum, then decreases and reaches
a minimum below CV = 1.5NkB . Unlike the cases of η = 0.5 and η = 1.0, the heat
capacity at high temperatures approaches CV = 1.5NkB from below for any parameters
q. The result can be seen from equation (35) as well, since the coefficient of (kBT /εF )η

in equation (35) is negative in the case of η = 1.5.

6. Conclusions

With the help of the q-deformed Fermi–Dirac distribution, we have studied the thermostatistic
properties of a q-deformed Fermi gas in any dimensional space and with a general energy
spectrum. Some important conclusions are obtained as follows. (i) The effects of the q-
deformation on the properties of q-deformed Fermi gases display different characteristics for
different dimensional spaces and energy spectrums. (ii) The q-deformation may significantly
affect the low-temperature behaviors of a Fermi system but does not alter the ground-state
properties of the system. (iii) At high temperatures (kBT � εF ), the q-deformed statistics
reduces to the undeformed statistical mechanics, which implies that the q-deformation is a
pure quantum effect.

Because of the general forms of the energy spectrum adopted, the results obtained
here may be used to study the properties of a variety of q-deformed Fermi systems, such
as nonrelativistic or ultrarelativistic q-deformed Fermi systems in any dimensional space.
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If q → 1 is set, the results obtained here are as well suitable for the systems of the ordinary
fermions.
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